If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-1927=0
a = 2; b = 6; c = -1927;
Δ = b2-4ac
Δ = 62-4·2·(-1927)
Δ = 15452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15452}=\sqrt{4*3863}=\sqrt{4}*\sqrt{3863}=2\sqrt{3863}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{3863}}{2*2}=\frac{-6-2\sqrt{3863}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{3863}}{2*2}=\frac{-6+2\sqrt{3863}}{4} $
| 3y/4-5=22 | | x-630=0,1871*x | | 36x²+12x+1=36x²+33x-20 | | 8+16x-3x=65 | | 3x^2+18x-63=0 | | x-630=0,1871+x | | -4t(-3t+1)-7t=5t-4 | | 3y/2+10=9 | | 9=4h | | 3z/4+18=24 | | x-630=0,2*x | | 3/4x+1/2=13/20 | | 2z+14=22 | | 6-3x=6+5x | | 2n+17=-1 | | 3y+4=-y+6 | | 1/2x+3/8=7/8 | | 2/3x+3/8=7/8 | | x^2+-11x+-32=-x | | u4=88 | | x2+-11x+-32=-x | | 5z+11=26 | | 1/2x=6/7=133/112 | | -9(2x*1)=45 | | -4y-12=-16 | | -3,2(x+4)-3=7 | | 4(-8x+5)+2x=-4 | | 6/7x+3/5=57/70 | | 0.4x-3/1.5x+9=-7/8 | | X^2-4x^2-3x-10=0 | | 1/2x+2/3=10/1 | | 6x+8=3x+(-19) |